You are given two integer arrays nums1 and nums2 sorted in non-decreasing order and an integer k.
Define a pair (u, v) which consists of one element from the first array and one element from the second array.
Return the k pairs (u1, v1), (u2, v2), ..., (uk, vk) with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [[1,1],[1,1]]
Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Brurte Force :
import java.util.*;
class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
PriorityQueue<int[]> maxHeap = new PriorityQueue<>(
(a, b) -> b[0] - a[0] // Max heap based on sum
);
for (int i = 0; i < nums1.length; i++) {
for (int j = 0; j < nums2.length; j++) {
int sum = nums1[i] + nums2[j];
if (maxHeap.size() < k) {
maxHeap.offer(new int[]{sum, nums1[i], nums2[j]});
} else {
if (sum < maxHeap.peek()[0]) {
maxHeap.poll();
maxHeap.offer(new int[]{sum, nums1[i], nums2[j]});
} else {
break; // Since arrays are sorted, further j will give higher sum
}
}
}
}
// Extract from maxHeap
List<List<Integer>> result = new ArrayList<>();
while (!maxHeap.isEmpty()) {
int[] top = maxHeap.poll();
result.add(Arrays.asList(top[1], top[2]));
}
// Optional: reverse because it's a max heap
Collections.reverse(result);
return result;
}
}
Optimal Approach :
🔑 Key Idea:
-
Use a Min Heap to store elements based on their sum nums1[i] + nums2[j]
-
Only push pairs where nums1[i]
is fixed and nums2[j]
moves forward (j++
)
-
Always expand the next element in nums2
from the current (i, j)
.
class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
List<List<Integer>> result = new ArrayList<>();
PriorityQueue<int[]> heap = new PriorityQueue<>((a, b) -> a[0] - b[0]);
for (int i = 0; i < Math.min(k, nums1.length); i++) {
heap.offer(new int[]{nums1[i] + nums2[0], i, 0});
}
while (k-- > 0 && !heap.isEmpty()) {
int[] top = heap.poll();
int i = top[1];
int j = top[2];
result.add(Arrays.asList(nums1[i], nums2[j]));
// ✅ Fix here
if (j + 1 < nums2.length) {
heap.offer(new int[]{nums1[i] + nums2[j + 1], i, j + 1});
}
}
return result;
}
}
Comments
Post a Comment